


drifts on geological time scales should cause errors comparable to the Hubble redshifts. Such drifts would occur
from ordinary creep in metals and glasses, which is currently uncorrected for except under enormous stresses or
high temperatures. The shifts for local calibration referents, used for both laboratory spectrometers and space
telescopes, would be undetectable owing to the small distance. I show below that these shifts exactly fit both the
cosmological acceleration and time dilation, and even satisfy Tolman’s test [1, 2] for the reality of the expansion!

The very notion of exploiting phase differences across wavelengths or frequencies is generally new. Holography,
synthetic aperture imaging and interferometry all involve phase differences at individual wavelengths. Pulse radar
imaging exploits phase differences across the frequency comb arising from the pulse repetition, but only indirectly
via a Fourier inversion [3]. The spectral phase profile must be characterized in ultrashort laser pulse technology,
but only for the subsequent pulse shaping use. Optical devices are expected to soon reach tuning speeds sufficient
to realize these shifts on earth, and their validation would have immense theoretic and practical implications.

The distance proportionality makes them the general time domain analogue of spatial parallax. They would
enable separation of signals from cochannel transmitters by transmitter distance and instant range determination
by physical means independently of the signal content, in analogy to the known angular separation of incoming
signals and the instant determination of transmitter bearing using directional antennae. They would thus enable
arbitrary band-limited communication simultaneously between arbitrary pairs of locations, by physics instead of
modulation and multiplexing in time or frequency domains. This would not only help realize Shannon’s vision of
simultaneous point-to-point communication [4], but would multiply channel capacities by their concurrent reuse
by noncolocated transmitters. They could be used independently, or in combination with all current technologies
like TDMA, FDMA, CDMA or WDMA in air, space or optical fibres, for multiplying bandwidths. The physical
plane separation of signals by source distance would also endow receivers with inherent immunity from in-channel
noise and jamming. They would additionally simplify passive radar and sonar by obviating computation intensive
path time correlations with multiple sources, and enabling aperture synthesis without phase reference.

Another class of potential applications for the proportional shifts is as frequency and wavelength transformers.
Transformers could be constructed to turn radio, terahertz or infrared wavelengths into visible, or visible into
ultraviolet or x-ray wavelengths, or the other way around, with accuracy and continuous tunability. Wavelength
transformation or scaling could be used both for imaging and diagnosis, by scaling received wavelengths to values
more suitable for observation and analysis, and for synthesis or generation, by scaling the wavelengths of available
sources to values desired in any particular application. For example, we might obtain coherent x-ray beams by
scaling optical lasers, or high power coherent infrared or optical beams by scaling up microwaves.

0

t1

t2

f(x − ct2)

f(x − ct3)

xr

t5

t4

t3

tc ∆t

Figure 1. Travelling waveform

The rest of this paper is organized as follows. The continuity
of real travelling wave spectra is established in Section 2, as we
propose practical use of it for the first time. Section 3 shows that
the spectral continuity implies the presence of full path length
information in received spectra in the form of the slope of phase
spectrum. Section 4 describes how this path length information
can be transformed into innovative spectral shifts by continuous
change of the instantaneous frequency or wavelength selections
in a receiver or observing instrument. Sections 5-7 discuss the
applications of the shifts and a theoretical verification. Broader
implications including time dilation in the Doppler effect, and to
cosmology are briefly discussed in Section 8.

2. CONTINUITY OF TRAVELLING SPECTRA

Transmission of information or energy by a travelling waveform
requires that the waveform begin at a definite instant at a source location and end at a later instant at a receiver
location. Fig. 1 illustrates the idea. A finite real-valued waveform f(x − ct) is shown starting at instant t = t1
at a source located at the origin x = 0, and propagating all the way to a receiver at x = r. The waveform is
shown at successive instants t1, t2, . . . , t5 when it arrives at the receiver. The ordinary notation for a travelling
waveform as f(x± ct) does not expressly limit its existence to a total interval of r/c+∆t, where r is the distance
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between the source and the receiver and ∆t denotes the entire duration of the waveform at the source or at the
receiver. Without this express limitation, the waveform appears to continue to exist for t < t1 and t > t5. The
usual portrayal of signals as time-varying functions also makes it hard to notice that a travelling waveform is
equivalently a spatial function f(x) with a finite compact support [0, c∆t].

In physical terms, a discontinous spectrum means that either the spectrum contains intervals of zero amplitude,
or has abrupt changes in amplitude, so that either the amplitude slope or the phase slope is undefined or diverges
to ±∞ at one or more points. The continuity is needed for the existence of the phase spectrum slope, on which
the innovative method of Section 4 depends, and is assured by the following basic result from Fourier theory.

Lemma 2.1 (Spectral continuity). The Fourier spectrum of any waveform of finite duration or extent
must be continuous and infinite.

Proof. We can impose a finite compact support [0, T ] upon an arbitrary waveform g(x), by multiplying g(x)
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Figure 2. Spectral continuity

with the interval function

u[0,T ](x)
△
=

{
1 for x ∈ [0, T ]

0 otherwise
(1)

and use the product g(x).u[0,T ](x) as a general candidate for
a travelling waveform. Its spectrum would be the convolution
product G(ν)◦U[0,T ](ν), where G(ν) is the Fourier transform
of g(x), and U[0,T ](ν) is the Fourier transform of u[0,T ](x),

given by U[0,T ](ν) ≡ 2T−1eiTν/2 sinc(2ν/T ), where sinc(ξ) ≡
sin(ξ)/ξ is continuous and infinite. Even if G(ν) itself were
discontinuous, say as a set of impulses, U(ν) would make the

convolution product G ◦ U continuous and infinite, as shown for a pulse train over time in Fig. 2.

The requisite continuity of the phase spectrum is thus assured for travelling waveforms on grounds that their
finite duration makes their spectra continuous and infinite. For ranging applications, it suffices to have a finite,
well-defined phase spectrum slope at one or more frequencies. For communication and wavelength transformation
applications, the slope must exist over the entire spectrum, barring an at most countable subset of frequencies,
whose contribution in the inverse Fourier transform would be vanishingly small.

In Fig. 2, we have also accounted for the finiteness of real pulse widths, which imposes an overall sinc profile
(broken line) on the spectrum. This outer profile limits the bandwidth in digital communication, since a narrower
bandwidth would widen pulses and reduce the bit rate. The inner sinc profiles from the duration of transmission
have never needed consideration in the past as they overlap the thermal linespreads of natural sources and noise
and clock jitter in communication. The method of Section 4 extracts coherent information from these linespreads.

3. SOURCE LOCALIZATION BY DIFFERENTIAL PATH PHASE

Lemma 3.1 below explains how even strictly periodic waveforms can transmit absolute source distance information.
This is ordinarily quite unintuitive, and depends on being able to choose infinitesimally close pairs of wavelengths.
Lemma 3.2 establishes more particularly that the slope of the phase spectrum gives a direct measure of the source
distance, and is the actual basis of the method of Section 4. The spectral continuity property established above
guarantees the existence of both infinitesimally close wavelength pairs and phase spectrum slopes.

φ0 φ0
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xf(x)

Figure 3. Periodic waveform

Both lemmas are more generally applicable to periodic waveforms, which
cannot of themselves represent travelling waveforms. However, decomposition
by the Fourier transform leads to sinusoidal components which are periodic,
and other periodic functions are often used in signal processing. The intuition
in Lemma 3.1 is that the wavelength of the beat wave between infinitesimally
close wavelength pairs is itself infinite, which makes the beat wave aperiodic.

Fig. 3 illustrates how a known initial phase identifies the possible locations
of a wave source, and thus partially determines its absolute location. Consider
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a function f(x) which is periodic with the period λ, i.e., f(x+nλ) = f(x) for integral values of n. The generalized
phase φ of f at an arbitrary point x would be simply the scaled normalized value φf (x) = 2π (x mod λ)/λ, relative
to the origin, which we may choose, without loss of generality, as the location of our receiver. If we determine the
form of f , and its phase at the receiver location, we would be able to compute f at any offset x in the direction
of propagation. If φ0 denotes the known initial phase of the periodic component, in the overall decomposition,
then the set of the possible locations of the source is Lλ(φ0) = {. . . , (−1 + φ0/2π)λ, φ0 λ, (1 + φ0/2π)λ, (2 +
φ0/2π)λ, . . . } ≡ {(n+ φ0/2π)λ, n ∈ Z}, where Z is the set of integers.

0 1 0 1 0 1

10 10 10

Figure 4. Localization information

Another useful quantity is the density of Lλ, which is simply λ−1, because
the lower the density, the less ambiguity we would have in locating the source
within a given coordinate range. For example, if we knew by another means
that the source might be in the coordinate interval [a, b), the set of possible
locations could be reduced, by a robust determination of the phase of f , to
Lλ ∩ [a, b). The ambiguity in localizing the source would be ⌈L/λ⌉ − 1, where
L ≡ |[a, b)| represents the length of the interval. The source would be perfectly
localized in the distance interval [a, b) if the ambiguity were zero. Incidentally,
as accurate determination of phase is difficult, and exact analogue comparison
of a real valued quantity is in any case impossible, we should more precisely
represent the set of possible locations in terms of φ0±δφ/2, where δφ is the uncertainty in the phase measurement.
However, this uncertainty is actually inconsequential as the ambiguity comes from repetitions of the wave period.
Consider that when f is a sinusoid, φ0 = 0, and δφ = π, each positive (or negative) “lobe” of the sinusoid identifies
an interval likely containing a point source (Fig. 4, top). If we improved the phase resolution to select a quarter
cycle, as shown at the bottom of Fig. 4, we would have obtained 2 bits of information to locate the source within
each cycle, but would not have identified its specific cycle. The ambiguity in terms of localizing the source down
to a specific cycle is thus independent of the precision with which phase can be determined.

Any periodic function would similarly have an infinite ambiguity in terms of localizing the source to a specific
cycle. However, an arbitrary linear combination of periodic or sinusoidal functions need not be periodic. If the
periods λ1 and λ2 of a pair of periodic functions are given to be rationally related, i.e., there exist integers a
and b such that λ1/λ2 = a/b, then a combination of the two will have the period abλ, where λ is defined by
λ1 = aλ and λ2 = bλ. By the same reasoning, a combination of functions of irrationally related periods cannot
be periodic. Since rationally related periods constitute only a dense subset of the 2-D real number continuum R

2,
the availability of absolute source distance information from a truly continuous spectral decomposition cannot
be ruled out! However, if extracting information from the nowhere dense subset of irrational period pairs looks
tricky, the following trigonometric identities

sin(k1x) + sin(k2x+ θ) = 2 sin

(
[k1 + k2]x+ θ

2

)
cos

(
[k1 − k2]x− θ

2

)
[ki ≡ 2π/λi, i = 1, 2]

and cos(k1x) + cos(k2x+ θ) = 2 cos

(
[k1 + k2]x+ θ

2

)
cos

(
[k1 − k2]x− θ

2

)
,

(2)

show that combinations of sinusoids (of equal amplitudes) are always periodic. The solution is to use beat waves.

Lemma 3.1 (Source localization). Given a wavelength λ in the Fourier spectrum of a travelling waveform
f(x), and given a real number L≫ λ, a second wavelength λ′ exists in the spectrum such that the source can be
located without cyclic ambiguity in the direction of travel within any interval of length |L| containing the source,
by measuring the phase of a combination of these Fourier components at an arbitrary distance from the source.

Proof. From Fig. 4, the ambiguity of localizing to a cycle in the interval L with a sinusoid of period λ is

ambig(L, λ) = ⌈L/λ⌉ − 1 . (3)

By equations (2), the beat wave between sinusoids of periods λ and λ′ would have the period λ′′ ≡ |λ−1−λ′−1|−1,
with the corresponding cyclic ambiguity ambig(L, λ′′). We would therefore have

ambig(L, λ′′) < ambig(L, λ) ⇔ ⌈L/λ⌉ < ⌈L/λ′′⌉ ⇒ λ′′ > λ

⇔ |λ−1 − λ′−1|−1 ≡
λ′.λ

|λ′ − λ|
> λ ⇔ λ′ > |λ′ − λ| ,

(4)
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i.e., we can reduce this ambiguity by simply choosing λ′ close enough to λ, and making sure the λ′ component
has amplitude close to that of λ so that equations (2) can be applied. By Lemma 2.1, the spectrum of a travelling
waveform must be both continuous and infinite. Hence, we can in principle choose λ′ arbitrarily close to λ, and
be also assured of equal amplitude. Doing so would make ambig(L, λ′′) arbitrarily small, including zero, since

ambig(L, λ′′) < 1 ⇔ 1 <

⌈
L

λ′′

⌉
⇒

λ′.λ

|λ′ − λ|
≥ L (5)

i.e., close enough to λ, provided L < ∞. We would also need a way to determine the initial phase value φ0 of
the beat wave. The continuity of the travelling waveform spectrum permits a reasonable assumption that the
initial phases of adjacent sinusoids would be close as well. That is, we may assume the initial phase offset θ → 0
in equations (2) as λ′ → λ. Then, regardless of what phases the sinusoids started with at the source, their initial
phase difference, which gives the initial phase φ0 of their beat wave, must be zero. A single measurement of the
beat wave phase thus suffices to uniquely determine the source location within L.

Lemma 3.1 only establishes the existence of absolute source distance information in a travelling wave spectrum.
It is not suitable for practical use, however, as it calls for precise selection of a pair of wavelengths λ and λ′ that
must be distinct but very close to each other. Rearranging inequality (5), we get

λ < λ′ ≤ λ(1 − λ/L)−1 ≈ λ(1 + λ/L) . (6)

The tightness of this bound is dictated by the useful choices for λ and expected range L. For optical wavelengths
λ ∼ 10−7 m, even a laboratory range of L ∼ 1 m imposes a bound of λ′ ≤ λ(1 + 10−7). This is certainly useless
for terrestrial or astronomical distances, as even for L = 10 km, we would need a wavelength resolution of 10−11.
This is complementary to the problem of measuring phase to some number of bits of precision in the first place,
as more than one bit of precision would be needed if we chose λ comparable to L to simplify the pair selection.
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Figure 5. Spectral phase gradients

An alternative to Lemma 3.1 comes from the theory
of Green’s functions, which are solutions of

LG(x, s) = δ(x− s) , (7)

where L is a linear operator acting on x, and δ(x− s)
represents the Dirac delta. When this is multiplied on
both sides by f(s) and integrated over s, the result is

∫
LG(x, s)f(s) ds =

∫
δ(x− s)f(s) ds = f(x) .

As
∫
LG(x, s)f(s) ds ≡ L

∫
G(x, s)f(s) ds, this enables

solution of Lu(x) = f(x) via u(x) =
∫
G(x, s)f(s) ds. In diffraction theory, boundary value problems are solved

using L = ∇2, the Laplacian operator, so that ∇2G(x, s) = δ(x, s). A general form of the boundary value problem
is given by Green’s second identity

∫
V

(φ∇2ψ−ψ∇2φ) dV =
∫

S
(φ∇ψ−ψ∇φ) · d~σ, where ~σ is everywhere normal

to the boundary surface S, and is solved by setting ψ = G. Trial solutions are applied of the form ψ = s−1eiks,
where s denotes distance from the source to the point of integration (see [5, Chapter 8.3]). These trial functions
are Green’s functions corresponding to a point impulse source and embody Fourier decomposition, as k ≡ 2π/λ
denotes the wave number of sinusoid. The generality of this approach stems from the equivalence of an arbitrary
source to a space-time distribution of point impulses, so that the electromagnetic potential distribution and wave
propagation become integrals of Green’s function solutions over all such source distributions.

An inseparable property of these Green’s functions, which hitherto had little significance of its own, is that
all of the component sinusoids would have the same starting phase of zero, as the phase factor eiks in the Green’s
functions does not include a phase offset. This is more general than the zero starting phase of differential beat
waves, and more particularly implies that the phase offsets of the Green’s function solutions at a distance x from
the point source would be equal to kx, and hence proportional to frequency, since ω = kc. As a result, the slope
of the phase spectrum would be proportional to x, as illustrated in Fig. 5, which leads to the next result.
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Lemma 3.2 (Phase spectral slope). Given a travelling waveform f(x), the distance to its point of origin
is well indicated by the slope of its phase spectrum at large distances from the origin.

Proof. By definition, the Fourier decomposition of f and its inverse are

F (k) =

∫ ∞

−∞

f(x) e−ikx dx and f(x) =
1

2π

∫ ∞

−∞

F (k) eikx dk . (8)

The inverse transform more particularly expresses the travelling waveform as the sum of its spectral components
F (k) eikx. In signal processing theory, the phase of an arbitrary complex-valued signal z(t) ≡ r(t)eiφ(t) is defined
as φ(t) = arg(z(t)) ≡ −i log(z(t)) restricted to (−π, π]. Hence, the slope of the phase spectrum is the gradient

∂φ

∂k
≡

∂

∂k
[i−1 log(F eikx)] = i−1 ∂

∂k
[logF + ikx] = x+ i−1 ∂ logF

∂k
. (9)

The continuity of the spectrum, which is assured only for travelling waves, is necessary for defining the gradient.
The derivative last term in equation (9) comprises the starting phase variations, and is therefore constant. As a
result, its relative contribution would diminish with distance, i.e.,

∂φ/∂k

x
= 1 +

∂ logF/∂k

ix
−→ 1 as x −→ ∞ , (10)

since F is independent of x.

Lemma 3.2 is a more general result as we would not be dependent on measuring a differential beat phase, but
measuring the slope still entails accurate measurement and correlation of the phase over at least two frequencies
in the received spectrum. Remarkably, we can exploit the phase spectral slope without any phase measurements,
so as to efficiently obtain the distances of the sources, or separate their signals, as will be explained in Section 4.

Though novel to most physicists and optical engineers and never successfully exploited before, this roll-off of
phase with distance is not totally unfamiliar to signals engineers∗. The closest notion in optics is the coherence
length, defined as Lc = λ2/η∆λ, where ∆λ is the half-power (3 dB) bandwidth around the wavelength of interest
λ, and η is the refractive index of the medium. Since even the most stable lasers are limited to coherence lengths
of a few metres, the linespreads ∆λ are known to be nonzero, and would correspond to the spectral continuity
of individual wavepackets as illustrated in Fig. 2. In interferometry and holography, the term coherence refers to
phase correlation over incremental distances (see [5, Chapter X]). Likewise, Doppler theory involves counting of
wavefronts only of individual wavelengths, and is orthogonal to the phase variation across wavelengths considered
here. This will become especially clear in the next section.

4. FREQUENCY SHIFTS BY FOURIER SWITCHING

received
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Figure 6. Components of phase

In general, a gradient ∂ψ/∂y of a physical property ψ transforms
into a rate of change dψ/dt, if its domain is traversed at a steady
speed dy/dt, since (∂ψ/∂y)(dy/dt) = dψ/dt. This is especially
useful in cases where dψ/dt is easier to measure than ψ or ∂ψ/∂y.

The phase spectrum slope ∂φ/∂k (equation 9) is difficult to
measure, but a rate of change of phase, dφ/dt, is generally easy,
since a rate of change of phase is either a frequency or a frequency
shift. The required domain traversal is a continuous variation of
the receiver’s frequency or wavelength scale at the rate dk/dt.

Fig. 6 depicts the various contributions to the instantaneous
phase at the photodetector in an instrument equipped with a diffraction grating and a lens for discriminating
frequencies or wavelengths. The total instantaneous detector phase φ′′ includes temporal variation ωt starting at
the source with a static phase offset −φs; path delay from the source to the grating −ωr/c; an additional phase

∗Dr. John A. Kosinski, US Army RDECOM CERDEC I2WD, has privately mentioned it as a long held intuition.
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change −φg due to transmission by the grating; and the path delay −ωρ/c from the grating to the detector, ρ
denoting the grating-detector path length. The total instantaneous phase φ′′ at the detector is thus

φ′′ = ωt− φs − ωr/c− φg − ωρ/c , (11)

so that the frequency actually detected would be

dφ′′

dt
=

d

dt
(ωt− φs − ωr/c− φg − ωρ/c) = ω(1 − v/c) , (12)

where ω is the angular frequency selected by the diffraction angle θ, and v ≡ dr/dt is the relative velocity from
the source. The second term in the final result accounts for the Doppler effect. The static offset φs at the source,
the grating shift φg, and the instrument path delay term ωρ/c do not have any effect on the detected frequency.
The signs were chosen so that the wave phase could be written as φ(r, t) = ω(t− r/c). This is the ordinary case
taken for granted in current spectroscopy, and it would be straightforward to add relativistic corrections.

The frequency scale can be varied in one of two ways to exploit the phase spectrum slope ∂φ/∂k. We could
move the detector over the focal plane of the lens, so as to select successive frequencies ω′ at a rate dk′/dt, as
suggested by the detector scope and scale markings depicted at the right of Fig. 5. Or we could vary the grating
intervals so as to cause the frequency ω arriving at a fixed diffraction angle θ to vary at the rate dk/dt. In either
case, the detector would be presented a continuous sequence of instantaneous values from a succession of Fourier
(sinusoidal) components of the travelling waveform, in place of a single Fourier component, so that the phase at
the detector would be accelerated relative to the static case in equation (12), with the following result.

Theorem 4.1 (Phase acceleration). To an instrument with frequency scale changing at a normalized
rate β, the spectra of static sources will appear scaled in proportion to the source distances r as ω′′ ≃ ω(1+βr/c)
or, equivalently, at scale factors z(r) ≡ δω/ω ≡ (ω′′ − ω)/ω ≃ +βr/c at r ≫ λ.

Proof. Assuming, as in Lemma 3.1, that the amplitude varies slowly in the arriving travelling wave spectrum,
the variation of phase φ′′ at the detector will be primarily due to the phases of the Fourier components and other
phase contributions already noted in equation (11), and not so much from the amplitude differences between the
Fourier components. Then, to a first order, the rate of change of phase at the detector would be

dφ′′

dt
=

[
dφ

dt
−
dφs

dt
−
d(ωr/c)

dt

]
−

[
dφg

dt
+
d(ωρ/c)

dt

]
(13)

where the first three terms on the right refer to the rate of change of phase entering the grating, and the remaining
two, the rate of change due to the grating itself. We have rewritten ωt as dφ/dt to allow for the fact that ω,
representing the instantaneously selected Fourier component, would be itself changing.

We shall represent the instantaneous selection by a single prime, as k′. The first term on the right in equation
(13) then leads to two parts, the intrinsic rate of change due to the original angular frequency ω, and a part
reflecting the changing wavelengths at the same diffraction angle θ, as

dφ

dt
=
∂φ

∂t
+
∂φ

∂k′
dk′

dt
≡ ω + k̇′

∂φ

∂k′
= ω , (14)

since diffraction per se does not contribute to phase nor, hence, to its rate of change; dispersion by the grating
will be accounted for separately below by terms in φg. The second term on the right in equation (13) expands
similarly, except ∂φs/∂t ≡ 0 as φs are constants with respect to time. However, k̇′ ∂φs/∂k′ survives because φs

would likely vary across wavelengths, and hence across successive values of k′. Modulation at the source would
contribute to variation of φs across wavelengths, and would be hence contained in this term. For constant wave
speed c, the remaining terms similarly expand to

d(ωr/c)

dt
= ṙ

∂(kr)

∂r
+ k̇′

∂(kr)

∂k′
= kṙ + k̇′r ,

dφg

dt
=
∂φg

∂t
+ k̇′

∂φg

∂k′
respectively, and

d(ωρ/c)

dt
= k̇′

∂(kρ)

∂k′
= k̇′ρ ,

(15)
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noting that k ≡ ω/c generally, and ρ̇ = 0 for a static lens assembly. Also, ∂φg/∂t cannot vanish while the grating
is being varied, but as remarked above, we could move the photodetector instead and keep the grating fixed, in
which case, we would indeed have ∂φg/∂t = 0. In either case, equation (13) leads to

dφ′′

dt
≡ ω′′ = ω − kṙ − k̇′(r + ρ+ φs

,k′ + φg
,k′) (,k′≡ ∂/∂k′) . (16)

Absorbing ρ into r, replacing ṙ with v, and noting that k′ ≡ k because the output and input wave vectors at the
grating would be identical at each instant, we get

ω′′ ≡ φ̇′′ = ω(1 − v/c+ [r + (φs
,k + φg

,k)]β/c) ≃ ω(1 − v/c+ βr/c) ,

and z(r) ≡ δω/ω ≡ (ω′′ − ω)/ω = − v/c+ [r + (φs
,k + φg

,k)]β/c ≃ − v/c+ βr/c .
(17)

The asymptotic form generally holds for r ≫ λ, since the source phase modulation and grating delay variation
would be unlikely to exceed a few wavelengths. To prove that the spectrum would be indeed scaled by the factor
(1− v/c+ βr/c) ≡ ∆, it is convenient to use the bra-ket notation of quantum mechanics. Fourier decomposition
in general is governed by the orthogonality condition, 〈ω′′|ω, r〉 ≡

∫
e−iω′′t e−i(kr−ωt) dt = e−ikrδ(ω′′ − ω). As t

literally denotes time measured by the Fourier analyzer clock, the orthogonality should allow for a variability in
the “ticking” of t, and thus more generally written as 〈ω′′|ω, r〉 ≡

∫
e−iω′′t ei(dφ′′/dt)(t−r/c) dt. Identifying dφ′′/dt

as the phase at the detector, and applying the asymptotic forms in equations (17), we get

〈ω′′, β|ω, r〉 ≡

∫
e−iω′′t ei(dφ′′/dt)(t−r/c) dt =

∫
e−iω′′t eiω(1−v/c+βr/c)(t−r/c) dt

= e−i(k∆)rδ(ω′′ − ω∆), ∆ ≡ (1 − v/c+ βr/c) .

(18)

For an arriving waveform |f, r〉 ≡ f(t−r/c), the notation 〈ω|f〉 ≡ F (ω) yields 〈ω′′|f, r〉 ≡ F (ω′′, r) = e−ikrF (ω′′).
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Figure 7. Time domain parallax

In the presence of phase acceleration, 〈ω′′|f, r〉 changes to

〈ω′′, β|f, r〉 ≡

∫

t

∫

ω

〈ω′′, β|t〉 dt 〈t|ω〉 dω 〈ω|f, r〉

=

∫

ω

∫

t

e−iω′′t dt ei(dφ′′/dt)(t−r/c)F (ω) dω

=

∫

ω

e−ik′′rδ(ω′′ − ω∆)F (ω) dω = e−ik′′rF (ω′′/∆) ,

(19)

using equation (18) to reduce the time integral. Equation (19)
proves that the scaling would be real, uniform and proportional

to the source distance r, and therefore also distinct from the changing scale of the instrument. It is straightforward
to prove, by applying the superposition principle to the travelling waveforms, that equations (11)-(17) would also
hold for a multitude of travelling waveforms fj(x) arriving simultaneously from sources at different distances rj ,
and would yield the scale factors ∆j ≃ (1− vj/c+βrj/c), for the respective waveforms, for the same common β,
so that the spectra would be separated in frequency according to the source distances, as illustrated in Fig. 7.

For instance, for an astronomical source at r/c ∼ 10 Gy† ≡ 3.156×1016 s, β ≈ 3.17×10−17 s−1 would suffice for
z = 1, i.e., doubling in frequency. This is so small that the total change of the grating intervals ζ(∆t) =

∫
∆t
β dτ

would amount to just 1.13×10−14, or a little over a cycle at visible wavelengths, for observation times of ∆t = 1 h,
and only 10−10 hypothetically for a full year. Larger β would be needed in most practical applications, but the
shifts βr/c would remain larger than, and distinct from, ζ over any individual Fourier integration window.

5. DISTANCE MULTIPLEXING, JAMMING IMMUNITY AND PASSIVE RANGING

The principal problem of communication engineering, as remarked in the Introduction, is facilitating independent
communication between multiple pairs of locations. In terrestrial communication, these end points generally lie

†Giga year ≡ 109 years. Geological literature also uses Ma and Ga to denote mega- and giga-annum, respectively.
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in the two-dimensional space of the earth’s surface, as illustrated in Fig. 8. The separation in frequency by source
distance allows separation of the respective signals using the physics of space instead of modulation or content.
For example, in Fig. 7, the same spectrum F (ω) could be scaled to F (ω/∆1), where ∆ ≡ 1+β1r/c, or to F (ω/∆),
∆ ≡ 1 + βr/c if it came from a source at distance r, depending on whether the rate of change was β or β1 < β,
assuming the source and the receiver are relatively static. For the same β, the same spectrum would get scaled
to F (ω/∆′), where ∆′ ≡ 1+βr′/c if it came from another (static) source at distance r′. Then, with a band-pass
filter, we may isolate either F (ω/∆) or F (ω/∆′), and recover the original signal from the corresponding source
by scaling the filtered spectrum back to the original frequency band. A formalism for treating this is given next.

Corollary 5.0.1 (Cascading phase acceleration). Phase acceleration can be cascaded, and the product
operator representing cascading of phase accelerations forms a commutative group for small β.

Proof. We may define a phase acceleration operator H(β) by setting 〈ω′′, β| = 〈ω′′|H(β), so that 〈ω′′, β|f, r〉 ≡
〈ω′′|H(β) |f, r〉. We would then have H(0) = 1, defining the identity element, since 〈ω′′|H(0) |f, r〉 ≡ 〈ω′′|f, r〉 ≡
e−ikrF (ω′′), which preserves the received spectrum. The inverse is similarly given by H−1(β) = H(−β). From
the definition k′ ≡ 2π/λ′ which relates k′ to the instantaneously selected wavelength λ′, we have k′−1dk′/dt ≡
(2π/λ′)−1d(2π/λ′)/dt = λ′.(−λ′−2dλ′/dt) = −λ′−1dλ′/dt, i.e., a negative β implies upward scaling of wavelengths
instead of frequencies. In an all-optical system using diffractive elements for both phase acceleration and filtering,
we would thus need to use negative β for the time domain parallax and signal separation.

Since the waveform arriving at the detector in Figs. 5 and 6 already presents a scaled wavelength or frequency,
it can be subjected to a further phase acceleration using a second grating with continuously changing intervals,
to which equations (16) would be applicable once again. This provides a product operation for the H operators,
and the product scale factor corresponding to H(β1)H(β2) would be (1+β1r/c)(1+β2r/c) = (1+ [β1 +β2]r/c+
β1β2 r

2/c2) ≈ 1 + (β1 + β2) r/c for β1, β2 ≪ c/r. This yields H(aβ1)H(bβ2) = H(bβ2)H(aβ1) ≈ H(aβ1 + bβ2),
so that the product is commutative and linear for small β, and makes the set of H(β) operators a group.

The signal selection and separation process would be described by the product operator H−1(β) G̃mH(β)Gb,
where Gb is the band-pass prefilter admitting the unscaled (unaccelerated) received spectrum F (ω) as in Fig. 7;
H(β) is the first phase acceleration employed to spread the received prefiltered signal to F (ω/∆) and F (ω/∆′);

G̃m is a band-pass “source selection” filter for selecting either F (ω/∆) or F (ω/∆′); and H−1(β) ≡ H(−β) is the
“phase deceleration” for returning the selected scaled spectrum back to its original frequency band.
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2 δ
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2 δθ

Figure 8. Multiplexing by distance

Similar notions of space division multiple access (SDMA) and of space
division multiplexing (SDM) characterize multibeam antennas on satellites
and in orthogonal frequency division multiplexing (OFDM). These existing
notions do not include multiplexing by distance, however. The connotation
of “division” in these terms is also at slight variance from the traditional
notions of time, frequency or code division multiplexing or multiple access,
in which the channel capacity itself becomes divided, whereas the distance
division capability, like the division of the solid angle in satellite SDMA,
multiplies the overall channel capacity, as the full bandwidth can be reused
by each source. The multiplication factor is quantified as follows.

Corollary 5.0.2 (Distance multiplexing). Any receiver using phase acceleration can resolve indefinitely
many band-limited transmissions at increments asymptotically proportional to the distance.

Proof. Assuming a centre frequency fc and nominal signal bandwidth 2W including guard bands, a pair of
sources at distances r and r′ > r (Fig. 7) would be just resolved when the higher end frequency fc +W from the
source at r scales to just below the lower end frequency fc −W from the source at r′, i.e., (fc +W )(1 + βr/c) =
(fc −W )(1 + βr′/c). Rearranging and substituting rn for r and rn+1 for r′, yields the infinite recursion

βrn+1/c = γ + (1 + γ)βrn/c , where γ ≡ 2W/(fc −W ) and n = 1, 2, . . . ;

whence δrn ≡ rn+1 − rn = γ (rn + c/β) , so that
δr

r
≃ γ ≃

2W

fc
for fc ≫W .

(20)

The result is a distance resolution of ±δr proportional to r, similar to parallax.
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If combined with a directional antenna for azimuth and elevation resolutions of ±δθ and ±δψ, respectively,
this would enable the receiver to selectively listen to a transmitter at any desired coordinates (r, θ, ψ) relative to
the receiver, regardless of all other transmissions on the same frequencies, friendly or otherwise, as follows.

Corollary 5.0.3 (Noise and jamming immunity). Interference or noise originating at sufficient distance
from a source of a band-limited signal can be suppressed independently of signal content, using phase acceleration.

Proof. Rejection of out-of-band received interference and noise depends on the performance of the prefilter
Gb. Rejection of in-band interference and noise from noncolocated sources depends mainly on the selection filter
G̃m. We would also expect noise and distortion due to nonuniformity and thermal or mechanical fluctuations in
the diffraction grating or other means used for the phase acceleration operations H and H−1. Fluctuations in β
would introduce interference as they would cause the signals from neighbouring sources to overlap. The broad
result holds for interference and noise sources outside the selected distance interval r ± δr.

Lastly, the shift βr/c itself is a linear instant measure of source distance, available without round-trip timing
or phase correlation with another illuminating source, as required in both active and passive radars today. For
visual indication, it would suffice to apply a notch prefilter to the received spectrum, and to display a precomputed
distance scale alongside the frequency (or wavelength) axis with no signal correlation at all.

6. WAVELENGTH TRANSFORMATION AND SYNTHESIS

As β is a rate of change of receiver frequency scale and both β and the range of variation are limited only by the
state of technology, phase acceleration enables continuous wavelength scaling over any range by any factor, well
beyond the capability of bandgap and nonlinear materials. The scaling could be additionally used for accurately
synthesizing radiation of any wavelength with desired polarization, coherence or modulation, by applying it to
an available source already capable of providing the latter properties. As both β and the source distance r would
be usable for fine control, accuracy and continuous tunability of the output wavelength are assured.
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Figure 9. Computed shifts for emerging fast FBGs

An inherent limitation lies in the fact that phase
acceleration expands or contracts successive segments
of the input waveform. If the wavelength is contracted,
the output would contain gaps between sweeps of the
frequency scale variation; if expanded, portions of the
source waveform would be correspondingly skipped.

7. REALIZABILITY
AND PARTIAL VERIFICATION

For device and terrestrial communication applications,
we require z = O(1) at distance scales of under 1 m to
about 104 m, which calls for normalized rates of change
β ≡ zc/r ∼ 108 to 104 s−1. Even for z ∼ 10−6 at r ≈ 1 m, we would need β ∼ 300 s−1. This may still seem large,
but the continuous variation is only needed in repetitive sweeps that can be as short as 1 µs. The total variation
would be ζ(1 µs) ≡ exp(300 s−1 × 1 µs) − 1 ≈ 0.0003. This is in the range of piezoelectric or magnetostrictive
elements, on which a reflective plastic grating could perhaps be bonded, but the speed would be in milliseconds.

-2
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 0  0.2  0.4  0.6  0.8  1

Input sample stream at β = 13000 (ns)

Figure 10. Distortion from variable sampling

Current fast-tunable fibre Bragg gratings (FBGs) that use
mechanical stress are rated at switching speeds of only a few
nm in wavelength per ms at around 1.5 µm, for which |β| ∼
(1.5 µm)−1 × 1 nm ms−1 ≈ 0.7 s−1. At these rates, a barely
observable shift of z = 10−6 would need r ≡ cz/β ≈ 500 km,
which makes the sun the nearest available test source! This
would also explain why phase acceleration and the associated
shifts remain unnoticed.
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Only the next generation devices, expected to attain Fourier switching speeds in the order of nm wavelength
in µs or ns‡, would be able to produce measurable z within a laboratory.

Fig. 9 illustrates spectral scaling and signal separation over 10 km fibre spools between four 1.54 µm (≡
130 THz) sources, assuming a core index of η ≈ 1.47, simulated in an equivalent digital signal processing (DSP)
realization of phase acceleration using variable sampling [6, 7]. A Java applet developed for this test incorporates
both deterministic and statistical simulations of linespreads in accordance with Lemma 2.1. The sampling rate
variation β is independent of the source distances, which are input only to the path phase computation, yet the
unmodified open source Java FFT applied to the sample stream reveals the shifts, as a partial test of the theory.
The time domain signal is distorted by the sampling rate variation, but is still periodic, as shown in Fig. 10.

8. BROADER IMPLICATIONS

The principle of radiation quantization and, more particularly, Planck’s quantization rule E = ~ω have made it
too easy to view electromagnetic radiation as comprising monochromatic quanta. This corpuscular perception
should be probably blamed for the inadequate treatment of diffraction in both particle physics and astrophysics,
to be pointed out below. Although the second quantization formalism is in fact based on standing wave modes,
it is commonly overlooked that travelling quanta cannot be monochromatic, and therefore cannot be Planckian!
Conversely, Planck quanta are necessarily merely detector state transitions, under no fundamental obligation to
exactly correspond to source state transitions responsible for the radiation. The Fourier integration involved in
any form of spectroscopy or frequency or wavelength selection is an inherently classical macroscopic process, and
also under no obligation to preserve the original quanta. Although multi-quanta interactions are well known, the
possibility of reconstituting photons by recombining multiple original Fourier components is new, and introduces
a more general notion of coherent integral transformations of light. More significant implications of the present
theoretic result concern astrophysics, as follows.

Principle 1 (Hubble uncertainty). Real spectrometers are subject to a fundamental uncertainty affecting
distant spectra, given by ∆β∆TE ≈ 1, where ∆TE is the time constant of component variations and ∆β ≡ β is
the resulting scale uncertainty affecting remote spectra according to equations (17). Since creep cannot be totally
eliminated, taking t⊙ ≡ 4.9 Gy = 1.55× 1017 s, the age of the sun, as a conservative upper bound on the rigidity
of our instruments, i.e., ∆TE ≤ t⊙, yields a scale uncertainty of ∆β ≥ t−1

⊙ = 200 km s−1 Mpc−1 ≈ 2.7 H0, the
Hubble constant.

Rationale. Creep is usually associated with high temperatures and stresses, but solid state physics provides no
fundamental constraint prohibiting dislocations even at arbitrary low stresses. The residual creep rate would be
governed by the dislocation probability pd ≡ e−Wd/kBT , where kB is the Boltzmann constant, T is the operating
temperature and Wd is the dislocation energy barrier typically about 1-2 eV, hence pd ≈ 10−11 . . . 10−21 s−1. We
should expect residual creep, under the compression of earth’s own gravity (due to the gradient ∇g) and aided
by the kneading effect of tides, to cause extremely slow continual shrinkage in instrument dimensions, hence a
negative β, consistent with redshifts, of within a few orders of pd. The Hubble redshifts are in fact of this order,
since H0 ≈ 73 km s−1 Mpc−1 = 2.4 × 10−18 s−1. 3

Two further results reinforce this implication. First, again from equations (17), we may equate v = βr/c to
obtain the equivalent apparent velocity of remote sources. With β ∼ H0, this would have the same form as the
cosmological expansion. Since the motion would be apparent and not real, however, it would be perfectly linear,
so that in the associated acceleration v̇ ≡ βṙ/c+ rβ̇/c = β2 r/c+ rβ̇/c, we should set β̇ = 0 identically, since the
acceleration refers to the optical path time (history) of the received light, and not the instantaneous variation at
the instrument. In terms of relativistic cosmology, this acceleration component of the uncorrected shifts would
be characterized by the deceleration coefficient q ≡ (−1 + β̇/β2) = −1. The observed cosmological acceleration
in fact corresponds to −1 ± 0.4 [8]. The next result is also unmatched by alternative cosmology theories.

Theorem 8.1 (Spectrometer and Doppler time dilations). Both spectrometric scale drift and Doppler
shifts imply a commensurate, apparent time dilation in the received light.

‡See, for example, the Sabeus and Optonet abstracts at http://www.dodsbir.net/selections/sttr1 05.htm.
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Proof. From equation (19), writing τ for receiver time and requiring 〈τ,−β|ω′′, β〉 ≡ eiω′′τ leads to

〈τ,−β|f, r〉 ≡

∫

ω′′

〈τ,−β|ω′′, β〉 dω′′ . e−ik′′rF (ω′′/∆) =

∫

ω′′

eiω′′τ dω′′ . e−ik′′rF (ω′′/∆)

[substituting ω′ = ω′′/∆] =

∫

ω′

eiω′τ∆e−iω′r∆/cF (ω′) dω′∆ ≡ ∆.f([τ − r/c]∆) .

(21)

This matches the cosmological time dilation, which is remarkable because time dilation has been hitherto regarded
as an exclusive consequence of relativity, so much so as to attribute the Doppler time dilation also to gravity [9].

All that equation (21) represents is that a uniform scaling of frequencies means a reciprocal scaling of time.
As the Doppler effect uniform scales the whole spectrum, repetition frequencies of pulses from a moving source
would scale by the same amount. Time dilation looks exotic only because scattering and other matter interactions
like the Wolf effect [10], do not uniformly act on the whole frequency axis, and in part because it is not significant
in terrestrial applications. The next result concerns the related effect on luminosity.

Principle 2 (Tolman’s brightness law). The apparent brightness of distant sources should diminish as
∆4 ≡ (1 + βr/c)4 ≡ (1 + z)4 with distance r due to β < 0 from any systematic scale drift in our instruments.

Rationale. Tired light theory was proposed by Zwicky [11] as a possible alternative to actual expansion almost
immediately following Hubble’s law [12]. Tolman proposed testing the reality of expansion by verifying whether
the brightness of distant sources decreased, after removing the effects of dust extinction and peculiar velocities,
with the redshifts as (1+ z)4 where one factor of (1+ z) would be due to the photon energy reduction due to the
redshift, a second (1 + z) factor accounts for the decrease in the photon flux rate due to the expanding distance,
and the remaining (1 + z)2 accounts for larger apparent area at the time of emission (aberration), since in tired
light theory, the brightness should decrease only due to redshift, as (1 + z), as the distance expansion and area
aberration factors would be absent [1, 13]. Actual tests yield exponents of 2.6 or 3.4 depending on the frequency
band [14, 15, 16, 17], and the difference from the expected exponent 4 matches the brightness variation predicted
in stellar evolution (cf. [18]).

The shifts due to phase acceleration would be also equivalent to the Doppler effect of apparent radial motion,
corresponding to v/c ≡ −βr/c or v = −βr in equations (17), after eliminating peculiar motions. The aberration
factor of ∆2 ≡ (1 + z)2 holds identically because when we interpret the shifts as Doppler, our resulting source
models would be based on the Doppler-corrected past distances, just as assumed in Tolman’s proposal, so that
the observed brightnesses would have to be similarly corrected for smaller starting areas for consistent physics.
Time dilation between photons would seem to be given by the second ∆ in equation (21), and it could be argued
that the detector state transitions representing the detected photons would be of lower energies as well. However,
we can no longer assume identity or even a 1:1 correspondence between the source emitted wavepackets and the
detected photons since equation (19) signifies a reconstitution of photon energies. All of the preceding theory is
inherently classical. The remaining ∆2 factor emerges classically from equation (21), as the power flux is given
by

∫
|〈τ,−β|f, r〉|2 dτ ≡ ∆2

∫
|f([τ − r/c]∆)|2 dτ . 3

Though Principles 1 and 2 primarily illustrate the physics of phase acceleration and the associated frequency
shifts, specifically, the amplification of creep and the redistribution of power flow, the implied challenge to current
cosmology theory is unfortunately real. The elementary conjugacy of time dilation to change of frequency scale,
exposed in equation (21), is also not the only omission in current mainstream cosmology.

There has been no path-integral treatment of diffraction for intra-galactic and cosmological space, as required
for a volumetric distribution of absorbing bodies, which yields a propagation law of the form I(r) ∝ r−2 e−σr,
similar to that for the ordinary attenuation of sound. All of the diffractive considerations in both astronomy and
particle physics have been limited to Fresnel-Fraunhofer approximations (cf. [19, pp.149-153], [20, pp.148-149]),
which are inadequate for describing successive diffractions of wavefronts that would lead to inaccessible trapped
states of energy, resembling neutrinos and contributing to both the radiation background and dark matter, as
the r−1 e−σr amplitude profile is a Klein-Gordon eigenfunction for particles of effective mass ~σ/c. Diffractive
(and gravitational) σ of just 0.05 dB Mpc−1 ≡ 10−24 dB m−1 is all it takes to yield the same cutoff of the visible
universe as the redshifts (cf. [21, 22]) and diffractive loss of metallic lines due to off-ray proximal matter is also
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unaccounted for in the treatment of primitive galaxies (cf. [23, 24]). The third key piece of the standard model,
primordial nucleosynthesis, again represents a predisposed model view, since the observed nuclear abundances,
such as of helium [25] or lithium [26], which are inconsistent with galactic production in the finitely old universe
of current cosmology and call for a homogeneous large scale cooling, would be equally and more simply explained
by accumulation in an infinitely old universe without requiring large scale cooling or inflation theory.

Closer to home, the measured lunar recession of 3.82 ± 0.07 cm y−1 [27] exceeds a näıve linear Hubble’s law
expansion on short scale§, again consistent the uniform apparent expansion of all measured distances that would
be expected for a systematic instrument cause like creep. More importantly, a correction for the dilation of past
time would be required in all measurements. Even NASA’s consideration of atomic clock drifts in the context
of the Pioneer anomaly has been limited to verification of the Allan variances [35 §V-C], which are essentially
autocorrelations computed by local circuits that would be similarly subject to creep. The time dilation correction
would increase the sun’s age to over 7 Gy and that of the universe, to infinity, consistent with the above inference
for nuclear abundances, and more conservative than the standard model.

Conclusion

I have shown that a drift of scale in frequency or wavelength selection will cause phase acceleration in proportion
to the slope of the phase spectrum of the received radiation, and result in scaling of subsequently detected spectra
in proportion to the source distance of the radiation. The acceleration must occur because the waveform arriving
at the subsequent detector comprises instantaneous values of the radiation from different successive sinusoids
present in the Fourier decomposition of the original waveform. The spectral scaling must occur since the detector
can only integrate the waveform actually presented to it by the preceding selection. The phase spectral slope to
support the phase acceleration requires continuity of the received spectrum, which is in turn guaranteed by the
finite beginning and end implicit for any wavepacket transporting information or energy. Proportionality to the
source distances is assured by the total path delay from the source, proportionality of the phase represented by
the fixed path delay in an individual sinusoid to its frequency, and the dominance of this path phase contribution
at large distances over any initial phase differences between the sinusoids. All of the mathematical premises are
basic and independent of relativity or quantum theory, and the mathematical consistency of the prediction has
been verified by digital simulation of linespreads with the path delay using variable sampling to simulate receiver
clock drift equivalent to a drift of its frequency or wavelength selection.

This prediction is as yet theoretic, like Doppler’s in 1842 [36]. The adequacy of real linespreads, for example of
continuous wave lasers and of radio waves, for the envisaged terrestrial and noncosmological applications is yet to
be established. A simulation available online¶ shows that optical devices may soon reach the continuous tuning
speeds necessary for a visual laboratory test of the theory, and also that radio frequency tests and applications
should at most require modified RF processing and would be well in reach of existing technology. The implications
for astronomical spectroscopy and cosmology (Section 8) concern subcycle drifts of scale even over lengthy photon
integrations, and should therefore hold regardless of immediate success or failure in terrestrial validation.
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§With H0 = 73 km s−1 Mpc−1, the linear Hubble’s law gives H0 × 384, 400 km = 2.87 cm y−1. This is relativistically
näıve, because the relativistic model anticipates no expansion on short scales [28, p719], and the gravitational deceleration
originally expected should have reduced the expansion to virtually vanish even at 1 AU [29], but is correct for the present
theory in which the recessions are merely apparent. The excess fits a known mismatch factor of 5 with laboratory frictional
coefficients [30], currently attributed to previously missing model detail [31, 32]. Since tidal dissipation concerns energy,
the corrected apparent recession would be 3.82 ×

√
5/(1 +

√
5) ≈ 2.64, leaving a margin of 1.18 cm y−1, for the real

recession, closer to historical recession rates indicated by paleontological data that would not have been affected by phase
acceleration, of about 1.27 cm y−1 from −2.5 Gy to −650 My [33, 34]. This mismatch too is currently attributed to the
lack of small seas in the past. Correcting for time dilation due to present clock drift brings the values even closer in line.

¶As a Java applet at http://www.inspiredresearch.com. This was used for the test results presented in Section 7.
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