Space Division Multiplexing

v guruprasad (prasad) 2005.03.16

www.inspiredresearch.com

Space Division Multiplexing

Distance + angle

Space Division Multiplexing

Distance + angle > directional antennae

Space Division Multiplexing

Distance + angle > directional antennae

depth ~ holography

(hence DDM, SDM)

background

wave effect recognized from astrophysics

informally in 1995-1996 ~ predicted cosmological acceleration (Λ)

background

wave effect recognized from astrophysics

informally in 1995-1996 ~ predicted cosmological acceleration (Λ)

in 1998-2000 ~ exact match + NASA spacecraft data under Bruce Elmegreen, IBM Research many partial ALL POSITIVE results ground to 15+ Gy

background

wave effect recognized from astrophysics

informally in 1995-1996 ~ predicted cosmological acceleration (Λ)

in 1998-2000 ~ exact match + NASA spacecraft data under Bruce Elmegreen, IBM Research many partial ALL POSITIVE results ground to 15+ Gy

in 2004 isolated wave effect + a systematic fallacy in calibration of space telescopes

opportunity

separation of signals by source distance

fundamental not using content, e.g. GPS (*must* separate **before** demodulation *or* decoding)

universal

orthogonal to FDM, TDM, CDMA

could also cut

noise & interference

opportunity

separation of signals by source distance

fundamental not using content, e.g. GPS (*must* separate **before** demodulation *or* decoding)

universal

orthogonal to FDM, TDM, CDMA

could also cut

noise & interference

& would *multiply channel capacity*

beyond Shannon's limit

Shannon theory ~ time × bandwidth fundamental dimensions = { time, frequency, direction, polarization } each dimension <u>multiplies</u> capacity

distance = new dimension

reuse full capacity for each source avoid partitioning by time, frequency, code or add more channels! source in the middle attack! how many? S S R 2C С channel capacity C (b/s) © 2005 V. Guruprasad. All rights reserved.

distance is a continuum

reuse full capacity for each source avoid partitioning by time, frequency, code or just keep adding more channels!

with angle, real SDM

cosmology is for dreamers

cosmic α_0 too small *and* non linear $\approx 10^{-18} \text{ s}^{-1}$ for the most distant galaxies $\approx 10^{-41} \text{ s}^{-1}$ at 1 AU ~ earth's orbit = 0 at r = 0 — *Einstein-deSitter*

no inverse for H⁻¹

need larger, receiver-controlled α

a terrestrial occurrence

is mandated by solid state physics gravitational compressive stress + tidal action

plasticity of all solids ~ telescopes, clocks

low stress limit creep rate ~ dislocation work function

 $exp[k_B * 1eV / 300K] \sim O(10^{-18}) s^{-1}$

extremely slow, weak half-life ~ age of solar system, universe

but exactly accounts for

Hubble "flow" and acceleration

(no dark energy)

 $10^{-18} \text{ s}^{-1} \approx 70 \text{ km/s per Mpc (mega parsec)}$

but exactly accounts for

Hubble "flow" and acceleration(no dark energy)NASA's anomalous "accelerations"Pioneer 10/11, Galileo

in all six deep space missions equipped for precision ranging

but exactly accounts for

Hubble "flow" and acceleration NASA's anomalous "accelerations" 5x mismatch tidal coefficients past expansion of Earth puzzle

(*no dark energy*) Pioneer 10/11, Galileo lab. & space (since '70s) geology + paleontology ('60s)

[Kurt Lambeck (1977), Paul Wesson (MS thesis, 1973)]

better fit than any prior theory

Hubble "flow" and acceleration NASA's anomalous "accelerations" 5× mismatch tidal coefficients past expansion of Earth puzzle large scale, $15 \text{ Gy} \approx 10^{17} \text{ m}$ solar system, $1\text{-}40 \text{ AU} \approx 10^{12} \text{m}$ lunar scale, $\approx 3.8 \times 10^8 \text{ m}$ plate tectonics $\sim 10^7 \text{ m}$

perfect empirical fit on every measured scale

(relativistic cosmology broken at both extremes!)

resolves long pending mysteries – but purely mundane

about cosmic microwaves...

astrophysics has MORE basic problems

diffraction analysis limited to Fresnel also in quantum field theory

questions current ideas of

CMB, dark matter, neutrinos

(recent – Jan 2005 – CMB data in favour)

earthly motivation

the consistency must mean something ... mundane!

some prior work on relativity

formalism *ignores calibration referents* relativity *postulates completely derivable* from referents

usual premise of spectrometric stationarity central to all of quantum physics even in wavelet analysis, etc.

but no prior analysis of the distortion

 $\rightarrow \rightarrow$

"new mundane physics"

directly from wave equation fundamental, very general like Doppler, but *receiver-controlled*

finally addresses spectrometric non-stationarity ties empirical data together

remainder of this talk

physical concept & principle

"initial hype" results

prototype status & a couple of lessons

distance information

ordinary (spatial) parallax

view changes with angle ~ *spatial frequency*

information in wavefront curvature

new notion of temporal parallax

view angle concerns

temporal frequency

semantics

in temporal frequency domain,

where is the wavefront curvature ?

what is equivalent to moving one's head?

temporal curvature of wavefronts

temporal curvature of wavefronts

measuring phase

coherent reference ordinarily needed

2 levels digital holography1 frequency holography & SAR

must be independent of signal phase

measuring temporal curvature

need only slopes, not absolute phases

measuring temporal curvature

so the trick is

measure against RATE of dial turning transforms phase slope \rightarrow frequency shift

 $\Delta \omega = d\varphi \,/\, dt$

dial turn rate ~ temporal parallax temporal equivalent of viewing angle

wave theoretic analysis

from wave equation total phase

$$\varphi = k r - \omega t$$

wave theoretic analysis

from wave equation total phase $\varphi = k r - \omega t$ $\rightarrow \qquad \Delta \varphi = k \cdot \Delta r + \Delta k \cdot r - \Delta (\omega t)$ last term (time part) = signal

wave theoretic analysis

from wave equation

total phase

$$\varphi = k r - \phi \mathbf{k}$$

$$\Delta \varphi = k \cdot \Delta r + \Delta k \cdot r - \Delta \mathbf{k} \mathbf{k}$$

$$\Delta \varphi = k \cdot \Delta r + \Delta k \cdot r$$

space part 1st term $\Delta \phi = k \cdot \Delta r$ fixed frequency holography, SAR

from wave equation

total phase

$$\varphi = k r - \phi \mathbf{k}$$

$$\Delta \varphi = k \mathbf{k} \mathbf{k} \mathbf{r} + \Delta k \cdot r - \Delta \mathbf{k} \mathbf{k} \mathbf{r}$$

$$\Delta \varphi = k \mathbf{k} \mathbf{r} + \Delta k \cdot r$$

space part 1st term
$$\Delta \varphi = k \lambda c$$

fixed fixed for the provided of the provi

from wave equation

total phase

$$\varphi = k r - \phi \mathbf{k}$$

$$\Delta \varphi = k \mathbf{k} \mathbf{k} \mathbf{r} + \Delta k \cdot r - \Delta \mathbf{k} \mathbf{t}$$

$$\Delta \varphi = k \mathbf{k} \mathbf{r} + \Delta k \cdot r$$

space part 2^{nd} term $\Delta \varphi = \Delta k$. r	
fixed distance	~ source
© 2005 V. Guruprasad. All rights reserved.	

from wave equation

total phase

$$\varphi = k r - \phi \mathbf{k}$$

$$\Delta \varphi = k \mathbf{k} \mathbf{k} \mathbf{r} + \Delta k \cdot r - \Delta \mathbf{k} \mathbf{k} \mathbf{r}$$

$$\Delta \varphi = k \mathbf{k} \mathbf{r} + \Delta k \cdot r$$

no more terms left

 \rightarrow fundamental in terms of phase information

resulting wave effect

discrete Δk pulse radar \rightarrow *limited by aliasing*

continuous scanning $\Delta \omega = d\phi / dt = r \cdot dk / dt$

Doppler-like ~ proportional

$$z = \Delta \omega / \omega = \beta r / c$$
 where $\beta = k^{-1} (clk / clt)$
measured "z" in astrophysics – well beyond 7
@ 2005 V. Guruprasad. All rights reserved.

realization

Receiver type

time-varying

diffractive optics

grating intervals

resonant or tuned systems tuning element

digital signal processing sampling interval

grating approach

sampling approach

 $\exp[kr \pm \omega t / a(t)] \equiv \exp[a(r) kr \pm \omega t]$

$\exp[kr \pm \omega t / a(t)] \equiv \exp[a(r) kr \pm \omega t]$

L. Parker's 1966 PhD thesis in cosmology

a ~ relativistic scale factor

$\exp[kr \pm \omega t / a(t)] \equiv \exp[a(r) kr \pm \omega t]$

L. Parker's 1966 PhD thesis in cosmology

a ~ relativistic scale factor

 $a(t) \sim receiver's$ scale of frequencies

receiver's view spatially distorted as a(r)

 $\exp[kr \pm \omega t / a(t)] \equiv \exp[a(r) kr \pm \omega t]$

L. Parker's 1966 PhD thesis in cosmology

a ~ relativistic scale factor

a(t) ~ *receiver's* scale of frequencies receiver's view spatially distorted as a(r)

receiver's decomposition is mathematical fundamental : not a postulate or result of physics $a(r) \equiv a(t)$ from the wave equation

principle of receiver decomposition

choice belongs to receiver receiver sums successive λ 's "Parker" if λ 's vary requires real signals – $\Delta \omega \neq 0$ like the natural occurrence...

fundamentally changes photon theories

initial example (from paper)

java prototype

simple design consoletest of "DDM filters" $H^{-1}\tilde{G}$ H operatorsRemez algorithmfilter design (\tilde{G})test of assumptions

envisage easily portable

to Software-Defined Radio, MAC layers

lessons from simulation

orthogonality ≠ *Fourier*

applying *H* to generated sinusoids gives scarily bad results *must simulate source with* $\Delta \omega > 0$ ("Parker" orthogonality)

ω -scanning mixes with signal

current area of work - should be easy to solve

"textbook DSP" is deceptive

may be necessary to use spatial spread ~ grating approach

must really really *try with* real *data* other audio samples not so lucky ~ back to the drawing board!

known limits

no fundamental limits

the Big Bang corresponds to z = infinity $\alpha > 0$

technology limits

limits of sampling, DSP – e.g. simulation woes must use RF – *IF separation will be poor* phase distortions in antenna, processing angular resolution of phased arrays filtering limits – stop-band rejection (*G*)

conclusion – or beginning?

a new basic wave effect shown with commensurate broad implications

must try with real data

unless totally mistaken...

