Source distance information and frequency shifts by chirp decomposition

v guruprasad www.inspiredresearch.com

APS Meeting 2006.03.15

motivation

- Fourier analysis is more than macroscopic
 - requires multiple samples ~ point observations
 - samples must be spread over time*
 - perfectly uniform sampling is impossible....

there could be uncorrected systematic errors

- What are the effects of sampling nonuniformity?
 - communication: only discrete rate variations used
 - equivalent to chirps, but chirp techniques still novelty
 - turns out ~ surprising new wave effect

*for "temporal frequencies"

sample-delay profile

- linear <=> Fourier
- in practice
 - sampling jitters annulled by long integration
 - rate drifts can be corrected by delays to ensure Fourier
- invariably linear
 - wavelets: static time scales

chirp sampling profiles

- nonlinear sampling new..
 at least to signal processing
- chirps per se are known
 radar, radiographic rotations
- chirp sampling: *non Fourier*
 - generator: exponential
 - equivalent to

continuously turning the tuning knob...

mechanics of integration

• world view:

- receiver states are chirped
- states only differ in phase!
- receiver's "window" moving
- receiver view: world moves
 - world chirps as sinusoids!
 - true world tones vanish!
 - requires "chirp content"
- surprise effect
 - world tones scaled
 - by source distances

loss of translational invariance

- same chirp seen at different colours
 - varies w/ arrival time/phase ~ assuming fixed starting phase
- related thoughts:
 - same properties should hold for photon amplitudes
 - similar chirps do occur in cosmology [Parker 1968,1969]

same for gratings

$$n \frac{d\lambda}{dt} = \frac{dl}{dt} \sin \theta$$

$$\frac{1}{\lambda} \frac{d\lambda}{dt} = \frac{1}{l} \frac{dl}{dt} = -\beta \quad \leftarrow \text{ normalized}$$
rate of change

2006-04-08

turning the tuning knob

- adds a rate of change of phase
- this rate *is* a frequency change
- and it is distance-dependent

Wave phase
$$\varphi = k r - \omega t$$

hence $\Delta \varphi = \Delta (k r - \omega t)$
 $= r \Delta k + k \Delta r - \Delta (\omega t)$
space part signal part

 $k \Delta r$ – the term most responsible in holography, synthetic aperture

 $r \Delta k$ – imaging in pulsed radars, using the frequency comb

Consider the total rate of change $d\phi/dt = r \, dk/dt + k \, dr/dt + \omega$ new term \Box \Box signal Doppler

The "received" frequency is then $\omega' \equiv d\phi/dt = r \, dk/dt + k \, dr/dt + \omega$

With $\beta \equiv k^{-1} dk/dt$, the new contribution is $\Delta \omega' = r dk/dt = \beta k r$

representing a frequency scaling factor

 $z \equiv \Delta \omega' / \omega = \beta r / c = \alpha r , \ \alpha \equiv \beta / c$

2006-04-08

source distance information

notice: signal phase profile moves with the waves, but the **kr** component does not ----

- spatial ($kr \equiv -\omega ct \sim but not \omega$ alone)
 - k is instantaneous receiver selection/tuning
 shifts independent of the signal
- inverse problem to -ve refractive index
 - not based on dispersion
- assumes
 - a differential continuum of frequencies ~ any real source
 - with phases consistent with common source location \rightarrow continuum => eliminates "aliasing" (unlike, e.g pulsed radar)

potential applications

• source location

- radar, rescue, navigation

communication

- multiplies Shannon capacity
- cellular w/o (or orthogonal to) CDMA, etc.

• devices

- "universal wave sources" from THz, IR to UV, X
- "cross-sensing" match any band to any sensor
- calculations are very encouraging

status, ack

- principle:
 - positive reviews in IEEE WCNC, MILCOM '05
 - from space radar, SIGINT experts
 - simulation examples at <u>http://www.inspiredresearch.com</u>

• empirical:

- "reverse-engineered" from a 1995-1996 astrophysics hunch
 - consistent evidence for a natural error spanning from Type Ia SNe to Pioneer 10, oceanic friction, and GPS base station drifts, for an uncorrected creep-related cause
- radio wave tests by a SIGINT research group scheduled
- IR/optical test device half-way (myself)

inspired research

references

- L. Parker PRL 21:562, 1968; "Quantized fields and particle creation in expanding universe – I", Phys. Rev. 183(5), 1057-1068, July 1969.
- K Osterschek and P Hartogh, "A fast, high resolution chirp transform spectrometer for atmospheric remote sensing from space", *Proc. 11th Intl. Geosc. & Rem. Sensing Symp.*, Finland, 1991.
- F A Jenet and T A Prince, "Detection of variable frequency signals using a fast chirp transform", *PRD*, 62(12), Dec 2000.
- C E Shannon, "A mathematical theory of communication", *Bell Sys. Tech. J.*, 27:379-423,623-656, 1948. (available online).