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Introduction Theory Analysis Conclusion

Summary

e Popular context: Astrometric solar-system anomalies!!]

e Pioneer: AV ~ i~ —Hor at r > 5 AU (blueshift) - SOLVED?
e Flyby: AV trajectory discontinuity at satellite range

e Lunar orbit eccentricity growth: also ~ Hp 8

e Earth orbit radius growth: also ~ Hp

e Present work: conclusive solution of the flyby anomaly
o All NASA-tracked flybys checked, fit to 1%, more issues found
o Fit presence and absence, correlated to transponder

e Real motivation and result: wave theory-+practice correction

e Rewrite communication and radar: source range in all signals
e Rewrites physics and astrophysics since Kepler

e Computation overlooked since Euler and d'Alembert

o Needed extremely robust empirical validation

[I]Anderson and Nieto 2009.
[2]Turyshev et al. 2012.
3]

The terrestrial reference frame is uncertain to about same order..Altamimi et al. 2016
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Introduction Theory Analysis Conclusion

Faithful led by the blind

e Fourier transform presumes clock rate stability

e Clock rate stability requires design and procedures
e But even HST calibration cycles only correct cumulative errors

e No awareness of range proportional or scale drift rate errors
e Best Allan deviations in any observations are o(Hp)
e What if drift rate errors < O(Hor) shifts — Hubble's law!

e Translational invariance is selective
e If only phase can change, di(t)/dt = iwi, so ¥(t) = e'“*

e Sinusoidal waves historically preconceived
e For vibrational modes under static boundaries

o Chirp transforms are known, what prevents their spectra?

e Chirps are translationally variant < Hubble-like shifts
e We don't need a contrived metric, any more than angels

e Translational invariance constrains analysis instead of physics

e FM, Doppler rate = continuously varying frequency w
e Current analyses assume Fourier: w =0
e The flyby anomaly is nature saying they are incomplete
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Engineers need to pave the way

Translational variance is fantastically useful*!

e Spectrum no longer a limited, shared resource
e Every receiver can be physically unjammable
e |nstant triangulation — no need for range codes, many radars

d’'Alembert equation notoriously factors unconditionally

e Wave equation admits (whole dimension of) expanding solutions
e We just didn't have a way to observe, access them
e Optical diffraction gratings, prisms are rigid ~ enforce invariance

Spectral analysis and selection are macroscopic functions

e Correspondence Principle is a Zeno's Paradox and a Red Herring
e The kernel is always physical, macroscopic and continuously variable
e Especially in radio receivers: local oscillator (LO)

Chirp spectra are translationally variant

e Components exp(iwoe’=21/3) & shifts Aw = —wBAL
e Don't really depend on r = wave notions are irrelevant!

(41 Guruprasad 2005.
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Spectra are computed representations :

“ T “ . . .
N Any FM in Fourier basis
€p . . -
2 - Discontinuous in w
g
e, - Pieces violate d'Alembert!
—
er - Velocity w unrepresentable
source receiver vanishes in ideal FT
w T w
> ep
L e Steady tone in chirp basis
e
b4
\)ﬁ) - d'Alembert with w # 0
e - Zero Fourier amplitudes!

source receiver

- Requires chirp basis

The representation defines component shifts, — basis itself has velocity &

like an oblique coordinate grid.

5/20



Introduction Theory

Analysis Conclusion

Spectra are computed representations -

source

The representation defines component shifts,

like an oblique coordinate grid.

T ]

receiver

w

receiver

Any FM in Fourier basis
- Discontinuous in w
- Pieces violate d'Alembert!

- Velocity w unrepresentable
vanishes in ideal FT

Steady tone in chirp basis
- d'Alembert with w # 0

- Zero Fourier amplitudes!

- Requires chirp basis
— basis itself has velocity w

5/20



Introduction Theory Analysis Conclusion

Spectra are computed representations s

“ T “ . . .
N Any FM in Fourier basis
€p
2 - Discontinuous in w
g
e, - Pieces violate d'Alembert!
e N —
er - Velocity w unrepresentable
source receiver vanishes in ideal FT
w T w
) P
s /\/\A/\ Steady tone in chirp basis
- d'Alembert with w # 0
- Zero Fourier amplitudes!

source receiver

- Requires chirp basis

The representation defines component shifts, — basis itself has velocity &

like an oblique coordinate grid.

5/20



Introduction

Theory

Analysis Conclusion

Spectra are computed representations «

w
T
s
€p
AVAVAVAVAN —
5 ez
€y
N N —
€r
source receiver
w w
T ]
S
’
€y
1%

source

receiver

The representation defines component shifts,

like an oblique coordinate grid. Any wave, hence
also its components, are integrated only as they

arrive.

Any FM in Fourier basis
- Discontinuous in w
- Pieces violate d'Alembert!

- Velocity w unrepresentable
vanishes in ideal FT

Steady tone in chirp basis

- d'Alembert with w # 0
- Zero Fourier amplitudes!

- Requires chirp basis
— basis itself has velocity w

5/20



Introduction

Theory Analysis Conclusion
Spectra are Computed representations 5
CAAAAAN %_) Any FM in Fourier basis
S e
i SVAVAVAVAVAN —be> - Discontinuous in w
g
e, - Pieces violate d'Alembert!
N T/
er - Velocity w unrepresentable
source receiver vanishes in ideal FT
‘ %A o
s L e Steady tone in chirp basis
e)/
\/\/\%) - d'Alembert with w # 0
e - Zero Fourier amplitudes!

source

The representation defines component shifts,

receiver

- Requires chirp basis
— basis itself has velocity w

like an oblique coordinate grid. Any wave, hence
also its components, are integrated only as they

arrive.

5/20



Introduction Theory Analysis

Conclusion
Spectra are computed representations 6
AN — - — e N Any FM in Fourier basis
S Pg === === m == mmm = - Mep . . .
RS ANAAA s oo - 2 - Discontinuous in w
~ 8
%} : : : ;p_:ec;ra:/ ;,.e;V: : : : :: :/::\:;;*e& - Pieces violate d’Alembert!
er - Velocity w unrepresentable
source receiver vanishes in ideal FT
w this is a power signal
S e e P A
s CBwnt Rt TS B u Steady tone in chirp basis
’/(//’ ~./_/_’~/:/’ ’ey
T ;pecua”"ew T f’“i)}) - d'Alembert with & # 0
o - Al - Zero Fourier amplitudes!

source receiver

- Requires chirp basis

The representation defines component shifts, — basis itself has velocity &

like an oblique coordinate grid. Any wave, hence
also its components, are integrated only as they
arrive. The views show 1:1 equivalence.

- Inclined view with shifts

5/20



Introduction

Theory

Analysis

Spectra are computed representations -

source

source

w

——————————— >

.......... Mep

,,,,,,,,,,, L

eg

€y

. S AN

er
receiver
w
L ep
’

-
‘~-__. y

VS
eI

receiver

The representation defines component shifts,
like an oblique coordinate grid. Any wave, hence
also its components, are integrated only as they
arrive. The views show 1:1 equivalence.

Any FM in Fourier basis
- Discontinuous in w
- Pieces violate d'Alembert!

- Velocity w unrepresentable
vanishes in ideal FT
this is a power signal

Steady tone in chirp basis

- d'Alembert with w # 0
- Zero Fourier amplitudes!

- Requires chirp basis
— basis itself has velocity w

- Inclined view with shifts

- A group under translations
(so Fourier is degenerate)

Conclusion

5/20



Introduction Theory Analysis Conclusion

The many challenges on the way

e Spectral connection to instrument scale variation was unclear

e Scale unit u, target interval L, measure is L/u
A drift rate 2 must add —fi.L/p®> = —fBL to velocities
But why would the virtual velocities have Doppler shifts?

e Time derivative of wavelength comb radar imagingl®!

e No fast continuously variable gratings for off-the-shelf optical test
e lLacked “empirical authority” for confidence on chirp spectra
e Made no sense to physics colleagues either (with Fourier view)

e Rigidity solvable in radio receivers, but

e Analogue is still rigid hardware & digital sampling rejects chirps

e Basic questions, besides time and cost, against experimenting:
What 3 is critical, how long to ramp? (limits components)
What signals to seek? Does it need “FM content”?

e Fortuitously answered by NASA, US STRATCOM, and ESA

(5] Guruprasad 2005.
6/20



Introduction Theory Analysis Conclusion

Modern, non-phase lock receiver (after Cassini)l®!

fTexp(iwoe‘B[tfr/c]/B) X exp(—iwxoeB,[/ﬁ/) dt
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[6]Chen et al. 2000, DeBoy et al. 2003.
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Introduction Theory

Transponder phase lock loop (Galileo, NEAR, Cassini)!’]
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Transponder phase lock loop (Galileo, NEAR, Cassini)m
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e Red path: carrier phase-locked loop, teal path: signal

e Phase error value is typically digital — using logic gates
o Analogue in time = phase error is detected continuously

= resonators track each RF cycle

= carrier Doppler, demodulated signal from chirp spectrum

[7]Mysoor, Perret, and Kermode 1991, Bokulic et al. 1998; Chen et al. 2000.
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Opportunity in the flyby data

e The distinct circumstances in Earth flybys (and NASA)

e Sustained Doppler rate 8 > 0 in approach, 5 < 0 in retreat
e Tracked by 2-way Doppler of telemetry carrier
Requires dedicated DSN (or ESTRACK) antennas
Even geostationary satellites do not merit this
e Non-repeating and used for subsequent mission calibration
so any lag or advance in Doppler stands out
o NASA started with phase lock transponder, and published data
ESA only due to NASA role, no data for JAXA, other countries

e Signature of the chirp mode in the flyby data

SSN residuals fit range lags: Ar = —vAt, At =r/c
Anomaly fits velocity lags: Av = —aAt, a=v
Velocity lags Av < Doppler lags Aw = wAt
Identical in sign, magnitude to CWFM but in excess
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The tracking and the anomaly

e Deep space tracking using telemetry

e PN codes (initial range) + Doppler integration (fine range)®
e Precise enough for general relativity tests!?!

e Velocity discrepancies AV across gap in tracking[!?]

e Galileo 1990: 4.3 mm/s
e NEAR 1998: 13.46 mm/s
e Rosetta 2005: 3.6 mm /s

Reported as 1.82, tracking resumed before perigee“zl

e Limitations of the JPL definition

- If there is no gap, AV cannot manifest (Cassini)
- Trajectory can be dynamically wrong even with AV =0
- AV is a computed error # real force/energy at orbit range

[S]Anderson, Laing, et al. 2002.

[g]Bender and Vincent 1989.

[IO]Antreasian and Guinn 1998; Anderson, Campbell, et al. 2008.
[lllMorIey and Budnik 2006.

[12]T Morley (2017). Pvt comm.
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Other symptoms

o Perigee shift relative to target at last control manoeuvre

e NEAR: 6.8 km change in altitude (NASA press releases)
e Rosetta 2005: —340 ms (advance, ~ 10.2 km)
Compare: Juno: +0.26 ms3104

o Large residual swings
e Around perigee (Galileo!'®, Rosettal'®!)

e Large diurnal oscillations post-perigee (NEARMILT

e Large range errors against SSN radars (NEAR[H], GaIiIe0[18])
e Up to 1 km ~ 100X precision, > 5511

o Yet JPL thought it was “noise” ¥, buried in AIAA 1998!

[13]Thompson et al. 2014.

[14]P F Thompson (2019). Pvt comm.
[15]Antreasian and Guinn 1998.
[16]Mor|ey and Budnik 2006.
[17]Anderson, Campbell, et al. 2008.
[18]J K Campbell (2015-). Pvt comm.
[19]P G Antreasian (2017). Pvt comm.
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NEAR's SSN radar range residuals: errors Ar

NEGA SRN: C=1 G=F N=105 M=-641.788 R=654.153 5:126.59
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e Against integrated telemetry Doppler range

e Too systematic for circuit fluctuations: R/S > 50
e Too large for random error: 40e Altair, 140e Millstone
e Too large for transponder latency: error At = 60-140 ms

"a

e At = one-way “light times"? r/c, whence Av = —ar/c

aGuruprasad 2015a.

Conclusion
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NEAR's SSN radar range residuals: the choices

NEGA SRN: C=1 G=F N=105 M=-641.788 R=654.153 5:126.59
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e Physicists’ interpretations

e Blame radar (JPL physics) = DoD’s SSN superluminal at 2¢?
e Source-dependent ¢ (EPL comment) ~ telemetry at c¢/2

e Concede JPL's graph already shows Aw = —wHr in Doppler
e Hubble's law with H = 3/c, 3: fractional Doppler rate ~ 1076/s

¥Since At is the full one-way light time

12/20



Introduction Theory Analysis Conclusion

NEAR perfect fit: Av ~ AV — post-encounter (Canberra)

2,500 7.5

N CTCTO I E o N T 7

£ 1,500
§1.oouf ::D
= 5 e 2
S —200
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e Av = —ar/c=11.13 mm/s at AOS ~ 20% of anomaly?
e Correlation with Av = JPL'’s direction prediction issue®

e Impossible growth in v (range rate from JPL Horizons)

aGuruprasad 2015a.
bAnderson, Campbell, et al. 2008.
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NEAR perfect fit: Av ~ AV — pre-encounter (Goldstone)

7.0 mm/s 2.51 mm/s e
200 — ————— e
|
I E 10
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150 — |
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El = iy
= F =!
5 =
5 S
=100 2} n
%D I —200 S i
/= S ' | -
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- —300 ranee rate o 10
—  Av = —ar/c
] L L L
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e Balance of Av found at LOS
e Total Av =11.13 +2.51 = 13.64 mm/s
e Result is 1.3% of AV = 13.46 mm/s?

? Anderson, Campbell, et al. 2008.
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Explaining Rosetta 2005 residuals

2.0 USUAL MODELLING AND DATA PROCESSING

1.8]+ Esa NEW NoRCIA ‘ B ] Range rate v |
16| NASA DSS 24 GOLDSTONE| N Acceleration a
Ry /\" M MINAY
: AN TN M
L WAy
& BRI
- gt = — b1 SEEE—.
&
at ., S —
WOIN EAIEE WOl worl, N
03foa o%joe $s3fos | osfio
03 04 05 06 07 08 09
MARCH
2005

Large residuals = Doppler not following range rate

Consistency with velocity lags < residuals follow acceleration

Broken residual tracks: fresh acquisition every day

New Norcia track consistently follows acceleration
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Explaining Rosetta 2005 residuals

2.0 USUAL MODELLING AND DATA PROCESSING

1.8{ + ESA NEW NORCIA [
@ 1.6| ° NVASA DSS 24 GOLDSTONE]

Ra
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214 { b
1\4 | = \%“5::%5-"T—\‘~"’—\\
I\ NN AN A
[ il A
— t r—
o < i Wi :
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2~06 ' IAVERAVE 20V [ IV IVAIR Y
0. | Yurasiher [V “wor” peRibee woll- WOl 1
(i 28 O3E 0;,‘04 O* 06 dS‘OS 03/)10
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FEB. MARCH
2005
e Large residuals = Doppler not following range rate
e Consistency with velocity lags < residuals follow acceleration
e Broken residual tracks: fresh acquisition every day
e Goldstone tracks acceleration till 05, even “outgassing” on 01
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Explaining Rosetta’s later flybys (2009)

0.0395 mm /s

DIDLON MIN SOT

Range [1000 k]
AOS New Norcia

—— range r
—— rance rate v,
L _1000 — Av=-2ar/c

= —10

= —1,200
I ! ! ! ! ! ! !

07:05 07:12 07:19 07:26 07:34 07:41 07:48 07:55

11-13 11-13 11-13 11-13 11-13 11-13 11-13 11-13

2009 : both LOS, AOS at New Norcia

e Avpps ~ —530 mm/s ~ 15 Hz — way outside loop filter band
e Avips = 0.0395 mm/s ~ 1 mHz — indistinguishably small
e Consistent with no anomaly
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- 10

Explaining Rosetta's later flybys (2007)

0 —41.76 mm /s

150 +

= —200

100

Range [1000 km|

50 o

/__LOS New Norcia ______ / _

20:24

2007 : LOS at New Norcia, AOS at Goldstone
e Avpps ~ —514 mm/s ~ 14 Hz — way outside loop filter band
e Avips = —41.76 mm/s ~ 1.2 Hz — also outside loop band

e New Norcia likely acquired Fourier mode much earlier
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The cold case of Galileo 1990[201[21]

Analysis

S FEGRL Ci GT Ne3295 e, 08a7as 35 R:D.00173505 5:0.00179453 o SEGRIT G G+T N-3a98 1o, 0a7ac 05 R:0.00173305 50, 00173495
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oiso - - - - - o1so - -
i g-120e 9170 s 0178
385555 R #1588 38:85:85 381588

e Goldstone residuals follow velocity late on the 9th
= unlikely to have caused anomaly

e Canberra residuals follow acceleration around C/A

e Start/end times too imprecise this close to C/A for Av-AV fit

= most likely cause of anomaly

[20]Antreasian and Guinn 1998.

[21]

P G Antreasian (2017). Pvt comm.
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Analysis

Continuously tracked: Cassinil??

Two-Way Doppler (mm/s)

06123 07/03 07/13 07/23 08/02 08/12 08/22 09/01

-0.20

06/23/99  07/05/99 07/17/99  07/30/99  08/11/99  08/23/99  09/05/99
Time

o Continuously tracked by multiple stations (watched pot!)

= dragging even by large Av gets averaged out
= spikes could be chirp lock at AOS, but too small

e No tracking gap = no possibility of AV discontinuity

[22]Guman et al. 2000.
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Non-phase lock: JunQ[23], MESSENGER[P4

o

-

deleted data

TvE (UTC) TvE (uTe)

e Juno residuals (above) comparable to Rosetta's
e But entirely consistent with multi-path reflections under spin
e “Deleted data" — tracks excluded for very large spin issues
o No anomaly consistent with non-phase locking:
e Tracks not overlapping but agree on trajectory: no Av
e Perigee shift: +0.26 ms, versus —340 ms for Rosetta

o MESSENGER residuals ~ Cassini's: 0.15 mHz — no anomaly

[23]Thompson et al. 2014.
[24]
J K Campbell (2015-). Pvt comm.
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Onward and outward

e We are truly done with the flyby anomaly

o All flybys analyzed where anomaly details and data available

e Only exclusions — all non-NASA and
Galileo 1992 (uncertain anomaly, no AOS/LOS details)
Stardust, DI/EPOXI?! OSIRIS-REx (no anomaly, details)

e Requested and overseen by J K Campbell of “JPL anomaly team”
Team noted consistent absence of anomaly since Cassini
Campbell noticed correlation with transponder change

e Chirp mode evidence is most robust observations of mankind

e Trajectory fits verify consistency — AV fit meaningless beyond 1%
e Direct evidence is NEAR’s SSN residuals

e Millstone data is 1000 : overall 50 ignoring independence
e Astrophysics, particle physics less robust on Allan deviations
e Chirp mode receivers would be simple, immensely significant
e Sawtooth FM of LOP — POC challenge is LO signal conditioning

[25]Bhaskaran et al. 2011.
[ZG]Guruprasad 2015b.
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